Что такое графен и где он применяется?

Графен – двумерный наноматериал, состоящий из одного слоя атомов углерода, выстроенных в правильные шестиугольники – гексагоны.

Идеальный графен сочетает в себе уникальные свойства:

  • самый тонкий материал в мире — толщиной в один атом;
  • самый прочный материал в мире — модуль Юнга более 1 ТПа;
  • имеет высокую электропроводность — подвижность зарядов более 1 000 000 см2/В∙с;
  • имеет высокую теплопроводность до 5000 Вт/м∙К;
  • оптически прозрачен в широком диапазоне от UV до far-IR;
  • гибкий и эластичный;
  • химический инертный.

Полезные ссылки на научные статьи о графене на русском языке:

Графен: материалы Флатландии. Статья Константина Новосёлова — лауреата Нобелевской премии 2010 года за исследования двумерной структуры — графена.

Полупроводниковые наноструктуры на основе графена. Обзорная статья Павла Борисовича Сорокина и Леонида Александровича Чернозатонского о современном состоянии исследований в области физики и химии графена.

Графен: методы получения и теплофизические свойства. Обзор Александра Валентиновича Елецкого о современного состоянии исследований в области графена.

Что такое графен и как он изменит нашу жизнь?

Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.

Что такое графен и чем он так уникален?

Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом. Отсюда — его первое уникальное свойство: самый тонкий.

  • В 60 раз тоньше мельчайшего из вирусов
  • В 3 тыс. раз тоньше бактерии
  • В 300 тыс. раз тоньше листа бумаги

Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.

Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.

Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.

Миф о токсичности графена

Влияние графена на человеческий организм до конца не изучено, но и токсичность графена никто не доказал. Единственную опасность представляет графен, который получают путем размешивания графита или углерода в воде: попадая в клетку, такие мельчайшие частицы действительно могут ее убить.

Однако сейчас в биоэлектронике используют другой способ получения графена — путем химического осаждения из газовой фазы. Частицы получаются достаточно крупными. Потом их закрепляют на подложке, и проникнуть сквозь клеточную мембрану они уже не могут.

Где уже используют графен?

Сейчас графен успешно применяют в электронике. Самый массовый продукт — это пауэрбанк: производители обещают, что сам он заряжается за 20 минут, а топовый смартфон заряжает наполовину за полчаса.

Существуют также графеновые куртки и платья. Последние, в частности, оснащены светодиодами, которые реагируют на дыхание и температуру тела, меняя цвет.

Теннисные ракетки с графеном весят до 300 грамм меньше, чем обычные, при той же силе удара.

Наконец, машинное масло с графеном призвано снизить износ двигателя.

Где можно применять графен в будущем?

Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак. Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.

Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.

Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды, гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду.

Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.

За 7 лет после вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.

В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах.

Всего в мире зарегистрировано более 50 тыс. патентных заявок с упоминанием графена. Больше половины из них принадлежит Китаю, следом идут Южная Корея, США, Япония и Тайвань.

В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.

В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд. В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.

В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним. Среди них — Samsung: компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Их главный конкурент — Apple — запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему — только начало.

В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.

Почему же графен до сих пор не изменил нашу жизнь?

Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.

  • 1 грамм чистого графена, который используют в электронике, стоит около $28 млрд.
  • 1 грамм графена, смешанного с пылью — около $1 тыс.

Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.

Что еще почитать и посмотреть по теме:

Подписывайтесь на Telegram-канал РБК Тренды и будьте в курсе актуальных тенденций и прогнозов о будущем технологий, эко-номики, образования и инноваций.

Битва за графен: мировое состязание за лидерство в технологиях будущего

Графен — это всего лишь одна из форм углерода, который может существовать во множестве кристаллических модификаций: например, как графит, алмаз, фуллерены или углеродные нанотрубки. Непосредственно графен можно представить в виде одной плоскости объемного кристалла графита — это первый кристалл толщиной всего лишь в один атом, экспериментально полученный в лабораторных условиях.

C одной стороны это очень простой материал, с другой очень сложно совместить двумерный материал толщиной в один атом с трехмерным миром приборов. Внешний мир — электроды, подложки и т.п. — оказывает влияние на графен, его свойства — это все очень трудно исследовать. Впервые это удалось сделать нашим соотечественникам, которые сделали это за рубежом — в Манчестерском университете. С тех пор их пионерские работы были процитированы в ведущих научных журналах более 100 тысяч раз. Интерес к графену по сей день остается беспрецедентным. В мире фактически началась новая гонка — за лидерство на зарождающемся рынке двумерных материалов. Государства в разных частях света тратят миллиарды долларов на графеновые исследования. Чем это вызвано? Как обстоят дела с исследованиями и разработками в этой области на Родине нобелевских лауреатов? О ландшафте графеновых исследований и о том, какое место на нем занимает Россия — в первом материале серии «Битва за графен».

Казалось бы на данный момент графен достаточно хорошо исследован, но тем не менее он еще таит в себе сюрпризы. Например, из графена можно удалять атомы углерода (с какой-то периодичностью или в виде какого-то узора) — получается материал с другими свойствами. Можно в графен добавлять атомы других материалов — это еще один материал с новыми свойствами. Свойства графена во многом определяются подложкой, например, химические свойства графена в зависимости от материала подложки еще не изучены. Очень мало информации и по физическим свойствам в зависимости от материала подложки. Техника постоянно совершенствуется, мы учимся работать со все меньшими и меньшими объектами и получаем все больше интересной информации. Одна из ключевых задач — встроить графен (двумерные материалы) в существующий цикл микроэлектронного производства, пока все такие устройства делаются вручную.

Графен может стать основой для нового поколения гиперспектральных камер, элементной базы для космической техники или беспилотных летательных аппаратов, материалом для сверхпрочных бронежилетов и многого другого.

У рассматриваемого материала интересные оптические свойства: является перспективным материалом для создания оптических инструментов, работающих одновременно в широком диапазоне частот — от видимого света до терагерцового или даже микроволнового излучения. Это лишь небольшая часть из интересных особенностей графена, но главное — его свойства сильно зависят от материала подложки, наличия дефектов и примесей, внешних воздействий и многого другого. Так что поле для научных изысканий здесь очень велико, и вложения в эту сферу только продолжат расти.

Исследовательский бум

Поэтому доля научных публикаций с упоминанием графена год от года непрерывно растет. Если в 2010 году мы имели 0,2% относительно всех научных публикаций, то в 2016 году — это уже 1% с прогнозом на 2017 — около 1,3%, согласно базе данных научных публикаций Web of Science. Для сравнения: в 2016 году доля публикаций с упоминанием слов «полупроводник» — 0,8%, «золото» — 0,9% , «лазер» — 1,7%. Абсолютным лидером в сфере графеновых исследований остается Китай: этой стране принадлежит почти половина всех научных публикаций с упоминанием графена. 12% самых высокоцитируемых работ, написанных китайскими учеными в ушедшем году, — публикации о графене. Уже сейчас с Китаем сложно конкурировать даже США, но говорить о финальной расстановке сил пока рано. Министр финансов Великобритании Джордж Осборн заявил, что Британия, где расположен один из крупнейших графеновых центров в мире, получивший название «Родина графена», стремится удержать мировое лидерство в освоении графеновых технологий в условиях серьезной конкуренции со стороны Китая и Южной Кореи. К гонке за лидерство подключились исследовательские центры Сингапура, Германии, Австралии, Японии, стремительно догоняющей их Индии и… Ирана.

Где мы?

Если в первые годы после открытия графена Россия была весьма заметным игроком в области графеновых исследований, то сейчас мы с каждым годом понемногу отстаем: 5,6% публикаций в середине 2000-х и 2,3 % в 2016 году. По общему числу публикаций с упоминанием графена за 2014-2016 гг. мы находимся на 14 месте, а по числу публикаций с высоким индексом цитирования или среднему цитированию на одну работу мы не входим в список 20 лучших стран. При этом надо отметить, что такое положение нашей страны обеспечиваются главным образом за счет сотрудничества с зарубежными коллегами. Например, доля России в высокоцитируемых работах 2014-2016 гг., где авторы в качестве места работы указали российскую научную организацию, составляет всего 12%. То есть даже имеющиеся скромные показатели — не полностью заслуга нашей страны. Свидетельством тому является отсутствие патентов и приглашенных докладов на профильных международных конференциях. Так, на крупнейшей конференции Graphene за последние три года Россия была представлена только одним устным докладом.

Графен и Россия

В нашей стране исследования с графеном проводятся по инициативе отдельных ученых. Помимо ряда институтов РАН в исследовании графена заметны успехи МГУ, СПбГУ и МФТИ. Физтех (МФТИ), помимо нобелевских лауреатов, подарил миру графена целый ряд других выдающихся ученых. Это, например, Александр Баландин (исследование теплопроводности графена), Леонид Левитов (теоретические исследования графена), Виктор Рыжий (графеновая оптоэлектроника) и другие. Не так давно на Физтехе был создан Центр фотоники и двумерных материалов, объединяющий несколько лабораторий. Его основная задача — разработка и создание с использованием графена и других двумерных материалов принципиально нового класса оптоэлектронных приборов и компонентов широкого спектра применений (наносенсоры, биосенсоры, нанолазеры, инфракрасные камеры, энергоэффективные световые устройства и многое другое). Нам уже удалось создать высокочувствительные графеновые биосенсоры, которые могут помочь в создании новых лекарств и вакцин от опасных заболеваний, в том числе от ВИЧ и рака. А сейчас совместно с датскими коллегами мы работаем над технологиями низкотемпературного синтеза графена, чтобы выращивать его непосредственно на элементах приборов электроники. Это бы позволило создать, например, сверхширокодиапазонные камеры, способные обеспечить видимость в темноте сквозь дым и туман. Однако пока это совершенно не тот масштаб, который бы позволил говорить о претензиях на лидерство.

Кто виноват?

У стран, которые обгоняют нас в графеновой гонке, есть кое-что общее: исследования в области двумерных материалов в них последовательно поддерживаются на государственном уровне. Например, в одном лишь городе-государстве Сингапуре вложения в эту область превышают $300 млн. А Европейская комиссия, запустила программу Graphene Flagship и выделила более €1 млрд на десятилетние исследования и разработки, которые проводят ведущие исследовательские институты и корпорации в 23 европейских странах. При этом только Великобритания дополнительно выделила более £235 млн на эти же цели. И это не считая финансирования, которое выделяется национальными научными фондами на конкурсной основе. В России же отсутствуют какие-либо целевые программы по исследованиям в области графена даже в рамках научных фондов, а ведущие российские университеты, несмотря на отчаянную гонку в мировых рейтингах, не выделяют эту тематику в качестве своих приоритетов.

Что делать?

В странах, которые сделали ставку на графен, ученым дают большой простор для научных исследований: обеспечивают необходимыми финансами и оборудованием, и предоставляют свободу в выборе тем исследований. При этом новые научные результаты — не главное в истории с графеном. Выявляемые и исследуемые уникальные свойства графена позволяют создать на его основе целый класс устройств нового типа, а потому исследовательская гонка сейчас — это гонка за захват рынка графеновых технологий. Причем речь далеко не всегда идет о принципиально новых рынках. Графен рассматривается в качестве материала, который изменит авиастроение, технологии освоения космоса, вооружение и военную технику, а также энергетическую отрасль. Все это — лишь вопрос времени. Не уделяя должного внимания материалам из двумерного мира, можно потерять позиции в том числе и в этих отраслях. Необходимо осознать важную вещь: в мире произошла графеновая революция, как когда-то с изобретением транзистора состоялась революция в электронике. Каких технологий нам стоит ожидать и когда они выйдут к массовому потребителю — в следующем материале серии.

Графен. Устройство и применение. Особенности и перспективы

Графен (G) представляет революционный материал, который открывает широкие перспективы. Это самый электропроводящий, легкий и прочный вариант углеродного соединения. G — был открыт Андреем Геймом и Константином Новоселовым, которые работают в Университете Манчестера. Русских ученых за это открытие наградили Нобелевской премией. На исследование свойств графена только на сегодняшний день выделено свыше десяти миллиардов долларов.

Ученые предполагают, что он может стать превосходной заменой кремнию, в особенности в полупроводниковой промышленности. Неслучайно его называют «материалом будущего». Несмотря на «молодость» графена, исследователи находят все новые свойства графена, которые открывают перед человечеством невероятное окно возможностей.

Что это графен

G — представляет двумерную модификацию углерода, в которой атомы объединены в гексагональную кристаллическую решетку, а его толщина составляет всего один атом.

При этом материал обладает уникальными свойствами:
  • Рекордно большая теплопроводность.
  • Большая механическая жесткость, он прочнее стали в сотни раз.
  • Высокая гибкость.
  • Большая электропроводимость.
  • Его температура плавления находится выше 3000 градусов.
  • Непроницаемость для большинства газов и жидкостей.
  • Прозрачность.

Если сложить 3-и миллиона листов графена, то можно получить толщину порядка 1 мм.

Чтобы объяснить самым простым способом, что такое G, можно сказать: данный материал состоит из мягкого слоистого материала, используемого в грифелях. Однако графен, в отличие от графита, имеет иную структуру. Так же, как графит и алмаз являются формами углерода, они существенно кардинально отличаются по прочности. Так и графен очень твердый в виду того, что его атомы имеют гексагональное расположение.

Чудеса начинаются, когда начинается выделение графена из графита. Благодаря толщине в один атом он представляет первый 2D-материал из когда-либо обнаруженных. К тому же он обладает многочисленными полезными и удивительными свойствами. Сегодня не существует такой области применения, где графен не был бы интересен. Именно поэтому проводятся многочисленные интенсивные исследования, которые направлены на изучение сфер, где потенциально можно было бы внедрить указанный материал. Для ученых открываются невероятные возможности, ведь G особенно широко можно использовать в развитии технологий и науки.

Устройство
Начиная с 2004 года, когда новейший наноматериал был открыт, ученые смогли освоить целый спектр методов его получения. Но основными из них являются следующие способы:
  • Химическое перофазное охлаждение, то есть CVD-процесс.
  • Эпитаксиальный рост в вакууме.
  • Механическая эксфолиация.
Последний метод является наиболее простым. Создание графена при помощи механической эксфолиации осуществляется следующим образом:

  • Выполняется нанесение специального графита на специальную клейкую поверхность изоляционной ленты.
  • Затем основу, словно лист бумаги, начинают разгибать и сгибать, отделяя необходимый материал.

При использовании указанного способа G получается наиболее высокого качества. Но подобные действия не подойдут для массового производства, указанного наноматериала.

При применении метода эпитаксиального роста:
  • Используют тонкие кремниевые пластины, у которых поверхностный слой состоит из карбида кремния.
  • Затем данный материал нагревают при весьма высокой температуре, достигающей 1000 К.
  • Вследствие химической реакции осуществляется отделение атомов кремния от атомов углерода, при этом первые испаряются. На пластинке остается лишь чистый G.

Среди минусов данного метода можно отметить необходимость применения высоких температур, при которых обеспечивается сгорание атомов углерода.

Наиболее простым и надежным способом, который применяется для массового производства графена, считается CVD-процесс. Данный метод представляет способ, при котором протекает химическая реакция между углеводородными газами и металлическим покрытием-катализатором.

В результате указанных методов получается двумерная аллотропная модификация углерода, которая образована слоем атомов углерода толщиной в один атом, которые соединены в гексагональную двумерную кристаллическую решетку посредством σ- и π-связей. Носители заряда графена обладают высокой подвижностью, самой большой среди всех известных материалов. Благодаря этому G является перспективным материалом для возможной замены кремния в интегральных микросхемах и будущей основы нано электроники.

Применения и особенности

Рынок применения графена непосредственно связан с прогрессом в производстве графена со свойствами, которые требуются для конкретного его использования. На текущий момент развиваются и применяются десятки методов по получению графена различного качества, формы и размера.

Среди методов, которые могут быть использованы, можно выделить три класса, получаемого графена:
  1. Хлопьевидный восстановленный оксид графена, который применяется для проводящих красок, композитных материалов и так далее.
  2. Плоский G, применяемый для создания высокопроизводительных электронных устройств.
  3. Плоский G, применяемый для создания неактивных и низкопроизводительных устройств.

Свойства конкретного класса графена, а значит и функционал приложений, где можно его задействовать, очень сильно зависят от качества подложки, материала, типа дефектов и тому подобное. А это в первую очередь определяется методом производства.

Графен в зависимости от метода производства сегодня применяется в следующих направлениях:

  • При механическом отслаивании графен применяется для исследований. Подвижность носителей заряда составляет 2×105 и 106 (при низкой температуре) см²В-1с-1.
  • При химическом отслаивании G применяется для создания композитных материалов, покрытий, красок, чернил, биоприложений, конденсаторов, прозрачных проводящих слоев. Подвижность носителей заряда составляет 100 см²В-1с-1.
  • При химическом отслаивании через оксид графена материал применяется для создания композитных материалов, покрытий, красок, чернил, биоприложений, конденсаторов, прозрачных проводящих слоев. Подвижность носителей заряда составляет 1 см²В-1с-1;
  • При методе CVD G применяется для создания наноэлектроники, фотоники, биоприложений, сенсоров, прозрачных проводящих слоев. Подвижность носителей заряда составляет 1000 см²В-1с-1;
  • При методе SiC G применяется для создания электронных устройств, высокочастотных транзисторов и иных устройств. Подвижность носителей заряда составляет 1000 см²В-1с-1.
На текущий момент изучаются и другие сферы применения графена:
  • В альтернативной электронике;

— наноплазмоника и оптоэлектроника;
— спинтроника;
— баллистическая электроника.

  • В химическом применении;

— газовые сенсоры;
— хранение водорода.

  • G — как конструкционный материал;

— композитные материалы;
— графеновые мембраны.

  • G — как проводник;

— холодные катоды;
— суперконденсаторы и электрические батареи;
— квантовые точки;
— НЭМС (наноэлектромеханические системы);
— прозрачные покрытия и проводящие электроды.

Так или иначе, но уникальные свойства, которыми обладает графен, смогут обеспечить внимание разработчиков и ученых к нему на десятки лет. Возможно, данный материал начнет вытеснять кремний из электронной промышленности.

Достоинства и недостатки
К достоинствам графена можно отнести следующее:
  • Высокая электропроводность . G — может проводить электричество как обычная медь. На его основе можно создавать различные электрические приборы.
  • Отличная оптическая чистота . G — может поглощать только чуть более двух процентов видимого света вне зависимости от характеристик излучения. Вследствие этого данный материал практически бесцветен. Сторонний наблюдатель может назвать его невидимым.
  • Высокая механическая прочность . G — по прочности превосходит алмаз.
  • Гибкость .G — является более гибким, чем кремний. По данным параметрам он даже превосходит резину. Благодаря однослойной структуре можно изменять форму и растягивать графен по мере необходимости.
  • Способность противостоять внешним воздействиям .
  • Рекордная теплопроводность . G — по данному показателю превосходит медь в десять раз.
К недостаткам графена можно отнести следующее:
  • На данный момент трудно получать G большой площади в промышленных масштабах с заданными высоко-химическими характеристиками. Удается получить лишь небольшие по размерам листы графена.
  • Промышленный G по своим свойствам в большинстве случаев проигрывает экземплярам, которые получены в научных лабораториях. Поэтому достичь аналогичных характеристик при применении промышленных средств на данный момент не удается, несмотря на совершенствование технологий.
  • Производство графена требует значительных затрат, что ограничивает его применение.

Тем не менее, эти трудности вполне преодолимы, что открывает широкие перспективы.

Что такое Графен?

И как в домашних условиях сделать самый прочный в мире материал.

Графен обладает многими невероятными свойствами. Это самый тонкий и прочный материал, известный человеку. Это превосходный тепло и электро проводник, даже лучший чем бриллианты, медь и серебро. Он сверхлегкий, но в то же время в 200 раз прочнее стали, и, кроме того, он биологически разлагаем, поэтому не представляет угрозы для окружающей среды.

Вы подумаете, что с такими впечатляющими свойствами графен должен быть очень сложным и специфическим материалом. Это отчасти верно; но в то же время как графен достаточно трудно производить в больших масштабах, он уже есть в вашем доме.

Как вы уже догадались из названия, этот материал происходит из графита, того самого, который находится внутри обычных чертежных карандашей. Когда вы пишете, чешуйки графита толщиной в несколько слоев прилипают к бумаге, но истинный графен более тонкий. Какую толщину имеет самый тонкий материал в мире? Один атом! Это настолько тонко, что можно считать этот материал двумерным в виду того что он практически не имеет толщины, только ширину и длину. Поэтому он производится в аккуратных тончайших листах. Таким образом, графен представляет собой гексагональную решетку атомов углерода толщиной в один атом. Вы можете самостоятельно создать его, удалив лишний слой графита из бумаги с помощью липкой ленты, сложив ленту и снова развернув её, чтобы отделить пласты углерода друг от друга.

Именно так его открыли в 2004 году ученые сэр Андрей Гейм ( Andre Geim) сэр Константин Новоселов, которые впоследствии получили Нобелевскую премию по физике за свои открытия, а также звания рыцаря-бакалавра указом королевы Елизаветы II.

Когда графен был обнаружен, это был шок для многих учёных, которые не верили, что один слой углерода может быть стабильным, особенно при комнатной температуре. Тем не менее, он не только был стабильным, он проводил электроны быстрее, чем любое другое вещество при комнатной температуре, учитывая идеальное, высокое качество его решётки. Отсутствие дефектов в структуре решётки означает отсутствие рассеянных электронов, что приводит к очень сильной, но гибкой связи. Манипулирование этими электронами также означает, что графен может быть преобразован в магнит толщиной в один атом-потенциально увеличивая хранение данных в миллион раз.

Где ещё может применяться графен? Список длинный и очень интересный.

Графен может выдерживать нагрузку 5 тонн и более без разрушения. Он прочнее алмаза, хотя алмаз и графен не слишком далеки друг от друга. Оба они состоят из углерода, который может стать только двумя естественными кристаллами — графитом или алмазом. Но алмаз не такой стабильный, как графен. Прочность графена может привести к созданию гибких небъющихся экранов телефонов, лучших пуленепробиваемых жилетов и более прочных городских строений. Предполагается, что графен станет будущим строительным материалом для космических кораблей, автомобилей, поездов, самолетов и даже лифтов, поднимающихся в космос.

Компания Samsung уже работает над внедрением графена в свои батареи с помощью графеновых шариков. В результате электрическая емкость увеличилась на 45%, а скорость зарядки — в пять раз. Полная зарядка такой батареи для телефона Samsung занимает 12 минут. Батарея также очень стабильна к перепадам температур. 20 минут зарядки подобного графенового аккумулятора дадут вам 600 км езды на электромобиле.

Электронное хранилище из графена обеспечит более эффективные солнечные элементы, которые смогут работать даже когда идет дождь.

Слои графена непроницаемы. Смешивание его с такими материалами, как резина или пластмасса, могут сделать их воздухонепроницаемыми, что обеспечивает более безопасные корабли и пищу, которая может сохраняться намного дольше.

Графеновые оксидные мембраны позволяют получить более дешевую воду для засушливых бедных районов мира. В то время как современные процессы опреснения воды являются дорогостоящими и используют много энергии, применение графена, как показали эксперименты, дало сокращение энергопотребления на 46%, что делает опресненную воду намного более доступной. Есть некоторые препятствия, которые необходимо преодолеть в отношении оксида графена и его проницаемости для соли, но прогресс в этой области является многообещающим.

Другие потенциальные сферы применения графена включают фильтрацию ядерных отходов, использование в суперкомпьютерах, а также создание лучших медицинских сканеров, транзисторов и секвенсоров ДНК. Внедряя графен непосредственно в наши клетки, врачи могли контролировать наше тело изнутри с помощью наноботов. Предполагается, что биоприложения графена станут реальностью к 2030 году.

Так почему же мы до сих пор не видим его повсюду?

Недостаток графена состоит в том, что его очень сложно производить. До сих пор учёным удавалось изготавливать его лишь в небольших количествах, самым крупным из которых был лист размером с кредитную карту. До недавнего времени мы даже не могли изготовить его за пределами лаборатории.

Для того чтобы произвести лист графена размером с кредитную карточку, масло сои было нагрето до 800 градусов Цельсия на листе фольги никеля, что заставило углерод упорядочиться в тонкую пластину графена. Но это все равно пока остается проблемой масштабирования. При попытке получить большие по размерам листы графена, материал получался низкого качества. Однако, эта проблема баланса чистоты и размера графеновых материалов напоминает аналогичную проблему получения чистого кремния, которая была в прошлые годы. Сферы применения этого материала и получаемая выгода слишком огромны, чтобы не продолжать исследования.

Что такое графен?

1 мкОм·см, что на 35% меньше, чем у меди, подвижность носителей заряда при комнатной температуре составляет 20 м2/В·с против 0,15 м2/В·с для кремния и 0,77·103 м2/В·с для антимонида индия, характеризуемого самой высокой подвижностью носителей заряда среди современных полупроводниковых материалов. Все это делает графен весьма перспективным для реализации на его основе микросхем, измерительных устройств, биодатчиков, ультраконденсаторов, гибких дисплеев и других инновационных устройств, превосходящих по своим характеристикам современные приборы.

Что такое графен?

Графен (C62H20) – одноатомный слой молекул углерода – относится к впечатляющему семейству углеродов, которое включает его трехмерные (алмаз, полуметаллы – графит), одномерные (полупроводники или металлы – углеродные нанотрубки) и нульмерные (фуллерены) аллотропные формы. Двухмерную аллотропную форму углерода, получившую название графен, описанную теоретически более 60 лет назад и широко используемую для описания свойств различных материалов на основе углерода, очень долго не удавалось получить практически, поскольку считалось, что двухмерные кристаллы не могут существовать из-за своей нестабильности. Это мнение было опровергнуто лишь в 2004 году, когда совместными усилиями ученых Манчестерского университета (Великобритания) под руководством профессора Андре Гейма и российского Института проблем технологии микроэлектроники и особо чистых металлов в Черноголовке под руководством доктора К.Новоселова удалось получить и воспроизвести структуру графена [1]. Сначала ученые провели мягким графитовым карандашом по бумаге, затем «промокнули» ее лентой обычного скотча, подобно тому, как это делают криминалисты, снимающие отпечатки пальцев. После отшелушивания скотч с многочисленными тонкими пленками графита и графена прижимали к подложке кремния со слоем SiO2 тщательно выбранной толщины. При этом трудно получить пленку, или скорее «лист», графена определенного размера и формы в фиксированных областях подложки. Поэтому главной составляющей успеха оказалась возможность найти с помощью оптического микроскопа слабую интерференционную картину образцов одноатомных слоев графита, перенесенных на поверхность кремниевой подложки. Авторы считают, что если бы не этот достаточно простой, но эффективный способ сканирования подложки в поисках кристаллов графена, их, вероятно, не открыли бы и по сей день. Таким образом, графен представляет собой двухмерную аллотропную форму углерода с гексагональной кристаллической решеткой, формируемой тремя из четырех внешних электронов атома с sp2-связями. При этом атом имеет три ближайших соседних атома. Несвязанные четвертые электроны находятся на вертикальных орбиталях, простирающихся над и под плоскостью кристаллической решетки. Присутствие пентагональных (пятиугольных) или гептагональных (семиугольных) кристаллических ячеек считается признаком наличия дефектов. В присутствии пентагональной ячейки плоскость материала сворачивается в конус. Присутствие 12 пентагональных ячеек вызывает формирование фуллерена. Введение гептагональных ячеек приводит к формированию плоскости седлообразной формы. Контролируемое добавление пентагональных и гептагональных ячеек позволяет формировать разнообразные виды материала.

Уникальные свойства графена обусловлены его кристаллической и электронной структурами. В полупроводниках носители заряда (электроны и дырки) взаимодействуют с периодическим полем кристаллической решетки, приводя к образованию квазичастиц (возбужденных состояний, ведущих себя как реальные частицы). Энергия квазичастиц в твердом теле зависит от их момента и описывается их энергетическим состоянием, находящимся либо в заполненной валентной зоне, либо в относительно «пустой» зоне проводимости. Эти энергетические зоны разделены запрещенной зоной, в которой энергетические состояния отсутствуют.

Кристаллическая структура графена состоит из двух эквивалентных подрешеток, что приводит к образованию двух энергетических зон и двух «конических» точек на уровне нулевого заряда носителей К и К’, в которых валентная зона и зона проводимости соприкасаются. В результате носители заряда в графене ведут себя как фотоны, или безмассовые квазичастицы с постоянной «эффективной» скоростью света (скоростью Ферми) νF ≈ 106 м/с, которые при низких значениях энергии описываются релятивистским уравнением Дирака. При этом электроны и дырки являются фермионами, т.е. частицами с полуцелым значением спина, и они заряжены. В настоящее время аналогов для таких безмассовых заряженных фермионов среди известных элементарных частиц нет.

Нулевая масса носителей заряда графена обусловливает их исключительно высокую подвижность – параметр, характеризующий пригодность материала для применения в современной электронике. Согласно измерениям рассеяния акустических фотонов графена, выполненных группой ученых под руководством А.Гейма и К.Новоселова, впервые сумевших в 2004 году получить графен, предельное значение подвижности носителей в этом материале при комнатной температуре и плотности носителей 1012 см-2 составляет 20 м2/В·с. (Подвижность носителей в кремнии составляет 0,15 м2/В·с, в широко используемом арсениде галлия – 0,85 м2/В·с.) Соответствующее значение удельной проводимости слоя графена составляет 10-6 Ом·см. Однако при измерении подвижности носителей графена, нанесенного на слой двуоксида кремния, рассеяние электронов фотонами подложки приводит к снижению значения подвижности до 4 м2/В·с, что тем не менее по-прежнему больше, чем у кремния и полупроводниковых соединений. При повышении температуры подвижность падает. Это связано с тем, что графен не представляет собой идеально плоский лист и имеет рифленую поверхность. При повышении температуры морщины и выпуклости графена начинают вибрировать, что замедляет движение электронов. Группа Гейма полагает, что в графене с более плоской поверхностью подвижность электронов будет еще выше. И действительно, сейчас ведутся работы по получению свободновисящих пленок графена, что должно увеличить подвижность носителей до 200 м2/В·c. Полученные значения подвижности свидетельствуют о том, что электроны могут перемещаться в графене на большие расстояния баллистически (без столкновений) и при комнатной температуре. Это свойство графена делает его многообещающим материалом будущих наноэлектронных систем [2].

Отсутствие запрещенной зоны в графене означает, что, хотя на его базе можно изготовить «углеродный полевой транзистор», никакое внешнее напряжение не сможет закрыть этот транзистор. И здесь возникает вопрос, как использовать необычайно высокую подвижность носителей заряда графена в наноэлектронике? Очевидно первое, что надо сделать, – это «открыть» запрещенную зону. Сейчас активно изучаются два способа получения в графене запрещенной зоны ощутимой ширины при комнатной температуре.

По-видимому, решить поставленную задачу можно достаточно простым способом – сформировать потенциал, по-разному действующий на две подрешетки графена. Объединение двух листов графена в двухслойный материал приводит к формированию четырех энергетических зон, две из которых соприкасаются, благодаря чему такой материал по-прежнему не имеет запрещенной зоны. Но в отличие от однослойного графена, носители заряда в двухслойном материале при приложении внешнего электрического поля могут иметь массу, что свидетельствует о возможности «открытия» запрещенной зоны и управления ее шириной. Ученым Калифорнийского университета в Беркли под руководством Фенг Ванга удалось показать, что при изменении внешнего напряжения, приложенного к двухслойному графену, от 0 до 250 мВ [3] можно управлять шириной запрещенной зоны материала в пределах от 0 до 250 мэВ (ширина запрещенной зоны германия и кремния составляет

740 и 1200 мэВ соответственно). Отмечается, что для получения столь впечатляющего результата было принято два важных решения. Во-первых, был изготовлен двухзатворный полевой транзистор, что позволило независимо управлять шириной запрещенной зоны и электрическим легированием материала. Нанополевой транзистор был выполнен на кремниевой подложке, которая служила его нижним затвором. Слой двуокиси кремния малой толщины отделял подложку-затвор от двухслойного графена, поверх которого был нанесен слой прозрачной окиси алюминия. Вторым затвором служила платина, выращенная на пленке окиси алюминия.

Второе решение, позволившее зарегистрировать появление запрещенной зоны и управлять ее шириной, заключалось в отказе от измерения электрического сопротивления графена. Вместо этого с помощью пучка синхротронного ИК-излучения, формируемого аппаратурой Advanced Light Source (ALS), регистрировалась оптическая пропускная способность графена. Варьируя напряжения затворов, ученые фиксировали изменение поглощаемого графеном излучения. Пик поглощения в каждом спектре соответствовал ширине запрещенной зоны для заданного напряжения затвора. Таким образом, путем независимого управления напряжением двух затворов ученые Калифорнийского университета показали возможность изменять ширину запрещенной зоны графена в достаточно широком диапазоне плюс возможность независимого задания его энергетических состояний за счет «электрического легирования» материала. Правда, проведенные эксперименты лишь показали, что графен пригоден для применения в наноэеклтронике. Для получения приборов с требуемыми характеристиками потребуется большой объем работ, в первую очередь по повышению чистоты материала.

Но сегодня особо привлекательным представляется способ формирования запрещенной зоны в однослойном графене за счет создания структур нулевого размера, так называемых графеновых нанолент (Graphene NanoRibbon, GNR). Исследования показали, что в зависимости от атомной структуры краев – креслоподобной (armchair) или зигзагообрзной (Zig-Zag) (рис.1) – нанолента графена, длина которой не намного больше ее ширины, может иметь свойства металла или полупроводника. Наноленты, формируемые путем разрезания листа графена вдоль зерен, имеют зигзагообразную структуру и характеризуются в основном свойствами металла, тогда как при разрезании листа вдоль зерен образуется креслоподобная структура. В графеновой ленте такой структуры возможно наличие запрещенной зоны и, следовательно, полупроводниковых свойств. При этом, как показали расчеты специалистов Политехнического института Ренсселира, шириной запрещенной зоны можно управлять, изменяя длину наноленты [4].

Наноленты формируются либо методами литографии и травления (как и элементы полупроводниковых приборов), либо сочетанием термического и ультразвукового отшелушивания графита из раствора и нанесения его на подложку.

Возможность получения лент графена с металлическими свойствами позволит отказаться от применения проводников в наносхемах. Это устраняет главное препятствие для применения в электронных схемах углеродных нанотрубок, сопротивление которых при присоединении металлических проводников существенно повышается. Работы ученых Института технологии штата Джорджия по анализу удельного сопротивления графеновых нанолент шириной 18 нм и длиной 0,2–1 мкм показали, что при комнатной температуре наноленты по этому параметру не отличаются от медных проводников того же размера [5, 6]. Поскольку параметры графеновых нанолент с неоптимизированными свойствами сравнивались с оптимистическими оценками удельной проводимости медных проводников малой ширины, исследователи считают, что в конечном итоге графен по своим характеристикам превзойдет традиционный проводящий материал. И не только по удельной проводимости, но и по более высокой подвижности носителей, теплопроводности, механической прочности и меньшей емкостной связи между соседними проводящими линиями. Благодаря этому достигается большая гибкость при построении различных наноэлектронных приборов с требуемыми характеристиками.

Плоские графеновые листы легко обрабатываются с помощью ионно-лучевой литографии, их можно нарезать на наноленты. Здесь интерес представляет предложенный специалистами Пенсильванского университета метод получения нанолент путем травления листов, содержащих несколько слоев графена, вдоль определенных кристаллографических направлений с помощью наночастиц железа.

Интерес представляет и работа ученых Политехнического института Ренсселира Сародж Наяка и Филиппа Шемелла по «настройке» свойств графена путем выращивания его на различных подложках [7]. Исследования показали, что при нанесении на поверхность, обработанную кислородом, графен приобретает свойства полупроводника, а при нанесении на поверхность, обработанную водородом, – свойства металла.

Таким образом, появилась возможность использования графеновых нанолент для формирования межсоединений и активных электронных приборов. И этой возможностью не пренебрегли крупнейшие электронные компании.
Графеновый транзистор

В конце 2008 года компания IBM объявила о разработке графенового полевого транзистора (GFET), работающего в гигагерцевом диапазоне. Тем самым был сделан важный шаг на пути выполнения программы создания углеродной электроники для ВЧ-применений (Carbon Electronics for RF Applications, CERA), спонсируемой DARPA и выполняемой под руководством Центра космических и военно-морских систем США (Space and Naval Warfare Systems Center, SNWSC).

Транзистор был изготовлен на основе наноленты графена шириной 20 нм с помощью метода механического отслаивания чешуек графита и размещения их на слое термического оксида кремния толщиной 300 нм, нанесенного на высокоомную кремниевую подложку (>10 кОм·см) (рис.2). Электродами стока и истока служили 10 нм/50 нм слои Pd/Au, которые наносились поверх слоя титана толщиной 1 нм, выполняющего роль адгезива. Изолятором затвора служила пленка оксида алюминия толщиной 12 нм, осажденная методом атомно-слоевой эпитаксии (Atomic Layer Deposition, ALD) при температуре 250°С. Электроды формировались с помощью электронно-лучевой литографии и взрывного травления. Электроды истока перекрывали всю графеновую чешуйку (рис.2б), чтобы минимизировать неопределенность при ее извлечении для измерения S-параметров транзистора. Расстояние между электродами истока и стока составляло 500 нм, верхний затвор длиной LG полностью не перекрывал это расстояние. Ширина затвора (или ширина обоих каналов) составляла

Для выявления проблем, влияющих на окончательные параметры прибора, после каждой технологической операции измерялись электрические характеристики транзистора по постоянному току. Было получено, что подвижность носителей до осаждения диэлектрика затвора µeff составляла 400 см2/В·с, после осаждения диэлектрика µeff существенно уменьшилась (рис.3).

В созданных компанией IBM графеновых полевых транзисторах заряд переносят электроны и дырки при положительных и отрицательных значениях напряжения соответственно. Минимальная проводимость соответствует точке Дирака, где вклад электронов и дырок в перенос заряда одинаков. Напряжение верхнего затвора транзистора слабо влияет на значение минимальной проводимости или ток, указывая на то, что металлизация электродов верхнего затвора не изменяет свойства графенового канала. Было установлено, что в полевых транзисторах с верхними затворами зависимость тока стока от напряжения ID(VD) почти линейная до напряжения 1,6 В. Отсутствие насыщения тока – следствие нулевой запрещенной зоны графена. Вероятно, насыщение тока в графеновых транзисторах возможно при более высоких значениях напряжения смещения. Но для достижения требуемой скорости насыщения при представляющих интерес значениях напряжения стока подвижность носителей очевидно должна быть более высокой.

Измерения высокочастотных характеристик графеновых транзисторов с верхними электродами и затворами различной длины показали отличную частотную зависимость усиления по току в режиме короткого замыкания, что указывает на подобие графенового транзистора традиционному полевому транзистору. Было получено, что с изменением напряжения затвора частота отсечки fT пропорциональна крутизне характеристики прямой передачи gm в соответствии с выражением fT = gm / (2πCG), где CG – общая емкость затвора. С уменьшением длины канала в соответствии с зависимостью fT

I/LG2 частота отсечки увеличивалась и при длине канала графенового полевого транзистора 150 нм составила 26 ГГц. По мнению разработчиков, при обеспечении в процесса изготовления высокой подвижности носителей графена (порядка 2000 см2/В·с) частота отсечки при длине затвора 50 нм может достичь уровня терагерц (1012 Гц).

В дальнейшем планируется выращивать графен на пластинах карбида кремния и уменьшить ширину канала графенового наноленточного транзистора до 2 нм [9–11].

Высокочастотный графеновый полевой транзистор продемонстрирован ООО HRL Laboratories (США) [12]. Работа выполнена в рамках программы CERA в сотрудничестве с группой университетов, промышленных компаний и Исследовательской лаборатории ВМС (NRL). Ток во включенном состоянии составлял 1180 мкА/мкм при напряжении стока 1 В. Частота отсечки была равна 4 ГГц при длине затвора 2 мкм. Максимальная частота 14 ГГц была зафиксирована при напряжении сток-исток 5 В. По-видимому, частотные характеристики можно улучшить, так как графеновые полевые транзисторы могут быть масштабированы до длины затвора менее 100 нм, что приведет к уменьшению значений паразитных емкости и сопротивления. Программа CERA была начата в июле 2008 года, ее завершение планируется на сентябрь 2012 года. Цель программы – создание на базе графеновых транзисторов малошумящих усилителей, работающих в W-диапазоне (>90 ГГц). Усилители планируется изготавливать на пластинах диаметром 200 мм или более с выходом годных, превышающим 90%. Предназначены усилители для военных средств отображения информации следующего поколения и широкополосных систем связи [12–14].

Работы по синтезу материала с оптимальными характеристиками и совершенствованию технологических процессов обработки позволили создать эпитаксиальные графеновые транзисторы с подвижностью носителей

6000 см2/В·с, отличным насыщением вольт-амперной характеристики и отношением тока включения к току отключения, равным 19.

Интерес представляет и разработанный учеными Массачусетского технологического института однотранзисторный умножитель частоты. Схема состоит из одного графенового транзистора и одного нагрузочного резистора. В отличие от традиционных полупроводниковых приборов на кремнии или арсениде галлия, работа которых основана на переносе носителей одного типа (электронов или дырок), ток графенового транзистора независимо от типа носителей всегда проходит через резистор в одном направлении, что и обеспечивает эффект умножения частоты. При подаче переменного входного сигнала в течение положительного полупериода индуцируется ток электронов через сток. В течение отрицательного полупериода индуцируется ток дырок. Выходное напряжение возрастает с нулевого значения в соответствии с изменением входного переменного сигнала, что и приводит к удвоению частоты. Исследователи полагают, что высокая подвижность электронов графеновых транзисторов позволит создать умножитель на частоту до 1012 Гц [15].
Графеновая память

Необычные свойств графена привлекают и разработчиков высокопроизводительных компонентов компьютерной техники, в том числе энергонезависимой оперативной памяти. И здесь внимание привлекают работы ученых Университета Райса (США) Джеймса Тура, Юйбао Ли и Александра Синицкого, создавших ячейку памяти на основе диэлектрических наностержней – сердцевины из двуоксида кремния с графеновой оболочкой толщиной 5–10 нм. Изучение характеристик таких стрежней показало нелинейность их вольт-амперной характеристики: при низких значениях напряжения сила тока монотонно растет с увеличением напряжения, но при некотором пороговом значении напряжения Vпор происходит резкий переход в непроводящее состояние (рис.4). Более того, такая структура обладает памятью: если наностержень перевести в непроводящее состояние импульсом, превышающим Vпор, это состояние после снятие напряжения не изменяется. Восстановление проводящего состояния возможно лишь при некотором значении напряжения V

Графен

Свойства графена изучили учеными К. Новоселовым и А. Геймом за что в 2010 г. получили Нобелевскую премию.

Графен — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в 1 атом.
Графит — это уложенные друг на друга слои графена, связанные между собой слабыми Ван-дер-Ваальсовыми связями, которые удалось разорвать.

Графен обладает большой жесткостью, теплопроводностью и подвижностью заряда, что делает его перспективным материалом для использования в самых разных приложениях, особенно в области наноэлектроники.
Графен вместе с магнитными молекулами ( органические молекулы, в составе которых есть 1 или несколько ионов металла с неспаренными электронами) может стать строительными блоками для будущих квантовых компьютеров, обеспечивая сверхбыстрые и энергоэффективные вычисления.
Обработка информации связана со скоростью тактовой частоты.
Носители заряда у графена ведут себя как релятивистские частицы с нулевой эффективной массой, что позволит создать работающие на терагерцовых частотах устройства,что недоступно кремнию.

Графен высокого качества экспериментально получен учеными К. Новоселовым и А. Геймом в 2004 г., за исследования его свойств они в 2010 г. получили Нобелевскую премию.
Правда «скотч-метод», которым они получили графен далек от промышленного и позволял получить его только в малом количестве — для исследований.

В 2015 г. британская Graphene NanoChem поведала о тестировании бурового раствора PlatDrill, который можно использовать при гидравлическом разрыве пласта (ГРП), и который на 25% более биоразлагаем, чем отраслевые требования. В 2017 г. Graphene NanoChem пописала контракт на поставку 4 000 баррелей PlatDrill на рынке сланцевого газа в Китае на сумму около 360 000 долл США.

В 2017 г. о разработках с использованием графена заговорили в Газпроме, анонсировав намерение сотрудничать с институтами Российской академии наук (РАН) для разработки технологии хранение природного газа с использованием нанонопористого графена в качестве абсорбента.

В июле 2019 г. ученые немецкого института в г. Карлсруэ заявил о получении графена из углекислого газа.

Досье

Графен — пленка толщиной в один атом, образованная двухмерной шестиугольной кристаллической решеткой из атомов углерода. Хотя теоретическое изучение графена началось еще в середине прошлого века, его первые образцы удалось получить только в 2004 году. Первоначально его получали, расщепляя графит на более тонкие слои с помощью липких лент. В настоящее время графен получают также, воздействуя на графит серной и соляной кислотой или выращивая его на кремниевой подложке. Основным практическим применением графена ученым видится электроника, так как на его основе можно создать транзисторы толщиной до 10 нанометров (пределом нынешних промышленных технологий является показатель в 22 нанометра). Кроме того, графен отличается высокой прочностью. Несколько слоев этого материала толщиной в 0,1 микрометра выдерживают до 2 тонн веса.

Углеродное чудо или как графен изменит наш мир

Разные периоды человеческой истории тесно связаны с теми или иными материалами. За каменным веком наступила эпоха бронзы, которую потом вытеснило железо. Последние десятилетия стали «звездным часом» кремния, который подарил нам цифровую революцию и интернет. Мы стремительно входим в следующий технологический уклад и судорожно ищем новый материал, достойный служить его символом. Возможно, что им станет углерод, вернее, одна из его разновидностей – графен.

В последние годы этот материал постоянно на слуху. Графен называют – ни много, ни мало – самым важным открытием XXI века и не жалеют в его описаниях превосходных степеней. Адепты технического прогресса обещают нам новый дивный «графеновый» мир, в котором мы окажемся буквально завтра. В нем железо не будет ржаветь, люди смогут делать топливо из воздуха и пить воду прямо из океана. Ну и по мелочи: мы получим новое поколение электроники, сверхпрочную броню, колоссальной емкости аккумуляторы и прочая, и прочая, и прочая. Скептики, слушая восторженные спичи такого рода, лишь привычно и гадко ухмыляются. Действительно, «графеновую революцию» нам обещают уже лет пятнадцать лет, а пока нет даже приемлемого способа получения материала.

Так что же такое графен: реальный прорыв или очередной научно-технический фейл? Почему его открытие вызвало такую истерию, и какие «пряники» сулит нам использование этого материала? И почему оно до сих пор не началось?

Химические и физические свойства

По химическому составу графен ничем не отличается от алмаза или графита – он состоит из тех же атомов углерода, вся «фишка» в их особом пространственном расположении. Именно оно приводит к колоссальному различию физических свойств. В традиционных материалах атомы упорядочены в трех измерениях, поэтому окружающие нас предметы имеют высоту, длину и ширину. Графен – это аллотропная модификация углерода, в которой атомы образуют двумерную гексагональную кристаллическую решетку толщиной всего лишь один атом. По сути, это просто единственный слой, «вытащенный» из объемного кристалла вещества – третьего измерения у него нет.

Графен – первый двумерный материал, полученный учеными. Благодаря такой уникальной атомарной структуре он может «похвастать» целым рядом удивительных свойств:

  • огромной теплопроводностью;
  • просто запредельной механической прочностью;
  • гибкостью;
  • высокой электропроводностью;
  • непроницаемостью для большинства жидкостей и газов;
  • прозрачностью.

Но самое поразительное другое: при своей атомарной тонкости графен абсолютно стабилен, он не распадается, хотя многие ученые не верили в это. Еще в 30-е годы выдающиеся физики Рудольф Пайерлс и Лев Ландау утверждали, что двумерные материалы будут неустойчивы и быстро разрушатся под действием внешних факторов. Оказалось, что атомы удерживаются вместе благодаря особым вибрациям.

Изучение этого чудо-материала продолжается, и он не устает удивлять исследователей. Так, например, недавно выяснилось, что двухслойный графен в определенном положении ведет себя как сверхпроводник, хотя раньше этого и не предполагали.

Открытие графена настолько воодушевило ученых, что буквально в течение десяти лет были получены еще три двумерных материала со схожими свойствами: силицен – на основе кремния, фосфорен – фосфора и германен – германия.

Как был открыт «материал столетия»?

Гипотеза о существовании двумерной формы углерода была выдвинута еще в XIX веке, но подтвердить ее фактически долгое время не получалось. В 1859 году Бенджамин Броуди впервые синтезировал оксид графена, но только в 1948 году с помощью электронного микроскопа удалось доказать чрезвычайно малую толщину этого материала. Позже ученые обнаружили, что среди кристаллов оксида графена попадаются частицы толщиной в один атом. В 70-е годы монослойный углерод пытались выращивать на различных металлических подложках.

«Крестным отцом» этого материала стал Ханс-Питер Бём, который в 1986 году предложил называть однослойный углерод графеном. В конце 90-х Йошико Охаши изучал электрические свойства тонких графитовых пленок толщиной в несколько десятков атомарных слоев.

Впервые получить графен удалось двум британским ученым российского происхождения – Андрею Гейму и Константину Новоселову. Для этого они использовали самые подручные материалы – кусок графита, обычный скотч ну и, конечно же, знаменитую русскую смекалку. Ученые наносили на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали, каждый раз разделяя вещество пополам. Когда пятно становилось совсем прозрачным, полученный графен переносился на подложку. Позже этот способ назвали «методом отшелушивания».

В 2010 году Гейм и Новоселов получили Нобелевскую премию и весьма обидную кличку от журналистов – «мусорные физики». Ученые всего мира наконец-то смогли исследовать графен, ибо липкой ленты хватало в любой лаборатории. Это стало настоящим прорывом: по словам людей, которые занимаются данным вопросом, за последние годы мы узнали о двумерных материалах куда больше, чем за все предыдущее столетие. В сети вы легко найдете подробное описание метода Гейма и Новоселова и при желании сможете повторить его в домашних условиях.

Новая эра в электронике?

Графен – уникальный по своей электропроводности материал: его сопротивление на 35% меньше, чем у меди, а по подвижности носителей заряда он превосходит и кремний, и антимонид индия.

Существующие сегодня чипы памяти и микропроцессоры уже преодолевают технологические границы в 10 нанометров. Процесс дальнейшей миниатюризации представляет значительные сложности. Все громче раздаются голоса, что мы практически достигли пределов кремниевых чипов. Сегодня разработчики топчутся на тактовой частоте около 4 ГГц, не в силах обеспечить дальнейшее увеличение быстродействия.

Кремний всем хорош для микроэлектроники, но есть у него и существенный недостаток – низкая теплопроводность. С увеличением плотности элементов и ростом тактовой частоты это становится серьезным барьером для дальнейшего развития отрасли.

Правда, для изготовления полевого транзистора из графена нужно как-то создать в нем запрещенную зону, чтобы задавать два состояния, пригодных для двоичной логики: непроводящее и проводящее. Однако уже сегодня предложены несколько способов решения данной проблемы, и это позволяет надеятся на скорое появление подобных транзисторов. Инженеры полагают, что быстродействие графеновых микропроцессоров может быть на порядок выше существующих – на основе этого материала уже построены транзисторы, модуляторы, микросхемы, работающие на частотах выше 10 ГГц.

Помимо высокой электропроводности, графен отличается практически полной прозрачностью. Он поглощает всего лишь 2% света, причем в самом широком оптическом диапазоне. Список материалов, одновременно обладающих этими качествами, очень ограничен, и графен лучше их всех. Поэтому это идеальный материал для жидкокристаллических дисплеев. Кроме того, он отличается высокой механической прочностью, так что скоро вы сможете забыть о разбитых экранах смартфонов и ноутбуков. Мы уже можем получать материал подходящего качества, и сейчас вопрос стоит только в снижении его себестоимости.

Графен не только прочный и прозрачный, он еще и отличается прекрасной гибкостью – пластину из этого материала можно растянуть чуть ли не на 20%. Поэтому уже в ближайшем будущем нас точно ожидает эра гибкой электроники. Подобные девайсы уже не раз демонстрировались на выставках, но до коммерческого использования дело пока не дошло. Весьма активен в этом направлении корейский гигант Samsung.

Еще одной ожидаемой областью применения графена является производство различных измерительных устройств, датчиков, сенсорных систем. Например, газовые датчики из этого материала могут реагировать буквально на единичные акты адсорбции/реабсорбции молекул — то есть работать на пределе чувствительности для таких устройств. Еще в 2015 году специалисты из Американского химического общества (ACS) на основе графена разработали прототип тепловизора с высокочувствительной матрицей, не требующей охлаждения. В будущем это позволит создавать качественные и, главное, недорогие тепловизионные приборы и обычные телекамеры, способные вести съемку в полной темноте.

Кто из нас не мечтал о новом смартфоне или ноутбуке с батареей, запаса которой хватало хотя бы на несколько дней? Очень может быть, что уже в ближайшем будущем это станет реальностью. Графен имеют максимальное отношение поверхности к объему, благодаря чему прекрасно подходит для аккумуляторов и суперконденсаторов.

Разработки в этом направлении ведутся самым активным образом. Несколько лет назад испанские инженеры сообщили о создании графенового аккумулятора для электромобилей, который может заряжаться всего за восемь минут, на 77% дешевле литиевых аналогов и в два раза легче их по весу. Разработчики утверждают, что заряда достаточно для 1000 километров пробега.

В 2017 году Институт передовых технологий Samsung (SAIT) заявил о создании революционной батареи на основе «графеновых шариков». Она, якобы, в несколько раз превосходит существующие аналоги по скорости зарядки и имеет на 45% большую емкость.

Тверже алмаза и легче перышка

Графен – самый прочный из известных нам материалов. По этому параметру он в двести раз превосходит сталь. Лист графена толщиной в один атом, выдержит давление острия карандаша, на другой стороне которого балансирует слон. А ученые из Georgia Tech пришли к выводу, что двухслойной пленке из этого материала не страшна даже пуля.

Понятно, что мимо таких способностей не могли пройти компании, занимающиеся военными разработками и защитным снаряжением. Уже появилось множество проектов графеновой брони, скафандров и легких бронежилетов. Правда, пока не совсем понятно, как из идеального двумерного материала сделать трехмерный, сохранив при этом его уникальные свойства.

На основе этого материал уже пробуют создать суперпрочные пластмассы и резину. Однако эти разработки пока находятся на начальном этапе.

Графен и проблема дефицита воды

Население планеты неуклонно растет, а количество водных ресурсов, наоборот, стремительно сокращается. Сегодня проблема нехватки питьевой воды не менее актуальна, чем проблема голода. И это при том, что ею покрыта большая часть поверхности земного шара. При чем тут графен, спросите вы?

Дело в том, что этот материал практически непрозрачен для большинства химических веществ, но воду он пропускает. Грубо говоря, фильтр с графеновой мембраной будет задерживать морскую соль, опресняя тем самым воду. Правда, неизвестно, насколько долговечным будет подобное устройство, ведь хлориды – очень агрессивные вещества. Ученым придется решить еще множество проблем на этом пути, но работы не прекращаются, ибо слишком уж заманчивы перспективы.

Точно так же можно очищать воду от любых токсинов, ядов и радиоактивных загрязнений. С помощью графена предлагают даже фильтровать ядерные отходы.

На страже здоровья или перспективы в медицине

Графен поможет человечеству победить рак. Он способен находить клетки опухоли в организме. Это удивительное свойство обнаружили ученые из Университета штата Иллинойс. Феномен связан с разницей электрических потенциалов здоровых и раковых клеток, которую легко определяют частицы материала.

Однако графен способен не только находить опухоли, но и эффективно уничтожать их. Биологи из Университета Манчестера выяснили, что частицы оксида графена могут поражать стволовые раковые клетки, никак не влияя на здоровые.

Уверенно можно сказать, что одной из главных сфер применения графена станут различные биодатчики, кардиостимуляторы, протезы, элементы нейроинтерфейса. Например, на основе этого материала уже разработаны специальные полупрозрачные татуировки, способные показывать температуру тела и состояние кожи. Медики надеются, что в будущем подобные рисунки смогут измерять активность сердца, мозга, снимать другие важные показатели.

Возможно, что графен поможет залечивать переломы костей. Ученые из Университета Карнеги-Меллона создали на его основе биоразлагаемый материал, который привлекает стволовые клетки к месту перелома. Это значительно ускоряет процесс восстановления. Пока этот метод опробован только на мышах, так что до практического использования еще далеко.

Уникальные динамики, краска будущего и презервативы

Возможности применения графена фантастически широки – кажется, что он пригодится человечеству буквально везде. Достаточно добавить его и любой материал станет прочнее, долговечнее, устойчивее. Мария Шарапова играет ракеткой, выполненной из графена, строители хотят домешивать его в бетон, Билл Гейтс прилично вложился в создание сверхпрочных графеновых презервативов. Автопроизводители хотят делать из него кузова машин, а авиастроители – детали ракет и самолетов. Вот еще несколько примеров возможного использования материала:

  • Сейчас немецкие исследователи работают над специальной краской на основе графена, которая будет сигнализировать о возможных дефектах изменением цвета. Пока этот проект находится в начальной стадии, о его коммерческом использовании говорить рано;
  • Китайские ученые из Северо-Западного университета разработали покрытие на основе графена, которое защищает металлы от ржавчины. Причем, этот состав способен самовосстанавливаться после небольших повреждений;
  • В конце 2017 года исследователи из частного университета Райса представили общественности кроссовки с добавлением графена. Материал был использован при изготовлении подошвенной резины. Разработчики утверждали, что их обувь отличается повышенной износостойкостью и невероятно прочна. Кроме того, кроссовки поразили присутствующих своей эластичностью: их можно было легко гнуть, крутить и складывать;
  • На основе графена планируют создать новое поколение акустических систем. Современные динамики работают за счет генерации механических вибраций. Британские ученые показали, что графен способен издавать сложные и управляемые звуковые колебания при нагревании и охлаждении. Таким образом можно изготовить колонки, которые вообще не содержат движущихся деталей, при этом заметно уменьшив их размеры. В идеале такой динамик будет частью графенового экрана вашего телефона или другого устройства. Опытный образец имеет размер меньше ногтя, причем в него еще встроен эквалайзер.

Долгий путь между пробиркой и прилавком

Открытие графена нередко сравнивают с изобретением колеса, паровой машины, бумаги или транзистора. О росте интереса к графеновой теме можно судить по увеличению количества заявок на патенты: в 2010 году их было около 6 тыс. штук, а в 2016 – это число увеличилось до 50 тыс.

Больше всего заявок подали китайские компании и научные центры. В Поднебесной все, что связано с графеном пользуется огромной государственной поддержкой. Китай особо и не скрывает, что планирует забрать себе до 80% графенового рынка. Аналогичные программы поддержки отрасли существуют и в других странах. Почему же до сих не видно массовых графеновых технологий, несмотря на очень серьезные финансовые вливания в эту отрасль? Тому есть серьезные причины.

В настоящее время используется несколько способов получения графена, которые, в принципе, уже обеспечивают промышленные объемы этого вещества. Довольно серьезной проблемой является качество полученных образцов, а именно от него во многом зависят свойства и функционал материала. И если для красок или композитов вполне сгодится дешевый хлопьевидный графен, полученный химическим путем, то для высокочастотной электроники необходимо качественное сырье с минимумом дефектов и примесей.

К сожалению, пока не существует установленных стандартов качества графена, из-за чего страдает отрасль в целом. Недавно было проведено исследование продукции 60 компаний, которые, якобы, предлагали графен. Однако вместо него в образцах был обнаружен дешевый графит, к тому же содержащий еще и примеси других веществ.

В принципе, нынешнее положение дел очень напоминает ситуацию на заре компьютерной эры, когда были огромные трудности с получением чистого кремния. Однако они уже давно решены.

Себестоимость графена неуклонно падает. Сегодня пластинка материала площадью 1 кв. см стоит меньше одного евро. Эксперт утверждают, что к 2022 году его цена упадет еще на порядок. Однако проблемы все еще остаются. Наибольшую трудность представляет процесс переноса графеновой пластины на ту или иную подложку – а это едва ли не основное требование для начала массового промышленного производства. Вероятно, что сначала мы получим графеновые экраны, затем дело дойдет до электронных устройств и различных детекторов. Другие, более экзотичные варианты применения материала, скорее всего, – дело ближайших десятилетий.

Внутри любого современного мобильного телефона «содержится» более двадцати Нобелевских премий, часть из которых была присуждена еще в середине 60-х годов. То есть, от идеи до ее воплощения прошло более пятидесяти лет. Графену не исполнилось еще и пятнадцати, а на рынке уже есть товары, содержащие этот материал. Так что графен не опаздывает, он, наоборот, опережает время.

10 способов применения графена, которые изменят вашу жизнь

16 августа 2018

Он прочный, он гибкий и он уже здесь: после долгих лет исследований и экспериментов графен приходит в нашу жизнь, а именно – в продукты, которыми мы пользуемся каждый день. В скором времени графен изменит мир смартфонов, аккумуляторов, спортивной экипировки, суперкаров и сверхпроводников. Свойства этого материала настолько невероятные, что некоторые люди даже считают, что графен достался нам от инопланетных кораблей, оставленных на нашей планете задолго до появления человечества.

Это, конечно же, фантастика, но потенциал графена не может не рождать подобные теории заговора. Прошло более 60 лет с тех пор, как ученые и производители электроники впервые попытались раскрыть всю мощь нового материала, однако его практическое применение стало реальным только сейчас. Новости о технологических прорывах в этой области не прекращаются, и очередной всплеск инфоповодов по этой теме состоялся в ходе недавней выставки мобильной электроники MWC 2018. Далее речь пойдет о 10 способах использования графена, которые изменят вашу жизнь в обозримом будущем.

Миниатюрные УФ-сканеры

Обычная одежда спасает нас от вредных ультрафиолетовых лучей, но зачастую этого бывает недостаточно, особенно в жарких солнечных странах. Проблема будет решена с помощью небольшого гибкого УФ-сканера, который может крепиться на кожу, как обычный пластырь, либо изначально встраиваться в одежду. Когда этот сканер определит, что вы слишком долго находитесь под прямыми солнечными лучами, он отправит соответствующее уведомление на смартфон, предупредив вас об опасности.

Умные стельки для атлетов

Производители обуви и спортивных товаров также делают большую ставку на графен. Сегодня уже существуют носки и стельки, распознающие силу давления в той или иной области подошвы. Но подавляющее большинство таких продуктов оснащены всего несколькими датчиками, графен позволяет разместить более 100 датчиков, которые никак не повлияют на вес обуви. Прототипы высокотехнологичных стелек существуют уже сегодня, они изготовлены из специальной пены и измеряют давление с точностью до миллиграмма.

Графеновый крио-кулер для охлаждения базовых станций 5G

Всем модулям беспроводной связи при увеличении объема передаваемых данных требуется все больше охлаждения, иначе оборудование перегреется. Таким образом, многократное повышение пропускной способности в приближающихся 5G-сетях. Разработанный в Швеции компактный охлаждающий насос способен понижать температуру базовых станций вплоть до -150 градусов, поддерживая стабильный сигнал.

Аудиотехника

Хотя впервые графен был получен в Университете Манчестера, исследования данного материала ведутся по всему миру, а наибольшее число патентов по использованию графена принадлежит Китаю. Неудивительно, что крупнейший производитель электроники в этой стране стал одним из первых брендов, внедривших графен в свои продукты. Так, Xiaomi Mi Pro HD являются наушниками с графеновой диафрагмой, которая позволяет передавать более громкий, чистый и насыщенный звук. Также у Xiaomi есть терапевтический пояс PMA A10 из ткани, покрытой графеном.

Самые эффективные в мире солнечные батареи

В Италии ученые разрабатывают солнечную батарею на основе графена и органических кристаллов. Такая технология позволяет делать солнечные ячейки более крупными, что повышает эффективность сбора энергии и удешевляет производство в 4 раза.

Графеновые самолеты

В авиации вес – это все, от него напрямую зависит стоимость полета. Именно поэтому Ричард Брэнсон (и другие, менее известные люди) предсказывают полный переход коммерческих авиакомпаний на гораздо более легкий и прочный графен уже в ближайшее десятилетие. И это не просто слова – к примеру, Airbus уже не первый год активно занимается этим направлением.

Чехлы для смартфонов

Чехлы со встроенной батареей так и не прижились на рынке, а проблема быстро разряжающихся мобильных аккумуляторов никуда не делась. Чехлы с задней панелью из графена смогут намного эффективнее охлаждать смартфон, прибавляя до 20% ко времени работы батареи в вашем мобильном устройстве.

Супертонкие электронные книги

На MWC 2017 компания FlexEnable продемонстрировала построенную на основе графена полноцветную пиксельную матрицу для энергоэффективных дисплеев и дисплеев с электронными чернилами. Такие экраны будут иметь толщину обычной бумаги. К тому же, эти матрицы будут гибкими, что избавляет от необходимости использования толстого защитного стекла.

Автомобили

Графен раскрывает широкие перспективы для автомобилестроения, в частности для электромобилей. Дело в том, что с изготовленные из графена транспортные средства обладают меньшим весом и большей жесткостью кузова, что позволяет им быстрее ускоряться и расходовать значительно меньше электроэнергии.

Сверхбыстрые зарядки

Что, если бы вы могли зарядить свой смартфон на 100% за 5 минут? Именно столько времени требуется зарядному устройству от Zap & Go. И хотя тестовый прототип имел емкость всего 750 мАч, этот результат не может не впечатлять. А в следующем году инженеры компании обещают снизить этот показатель до 15-20 секунд. Тем временем, в Huawei разработали обычные литий-ионные батареи, которые благодаря применению графена могут работать на температурах до 60 о С, что на 10 превышает показатель стандартных аккумуляторов на 10 градусов, что продлевает срок эксплуатации батареи почти в 2 раза.

Ссылка на основную публикацию